医進
2022.10.29
今週の医進 vol.21
太陽は月の約何倍の大きさ? 2022.10.27
今日は1学期から2学期にかけて学習した「図形と相似」を利用して、太陽と月の大きさを比べてみることにしました。
日食という現象を知っていますよね。その中でも、太陽と月の視直径(見た目の直径)がまったく同じになり、ぴったりと重なる日食のことを「金環皆既日食」というそうです。
視直径がまったく同じ場合を図で考えてみると、相似な直角三角形が書けることに気付きました。そこで、まずは相似比を利用して、太陽の半径は月の半径の約何倍なのかを求めることにしました。
計算のために、地球から月までの距離、地球から太陽までの距離、月の半径は教えてもらいます。正確な値だと計算が大変なので、概数で計算することにしました。
計算の結果、月の半径と太陽の半径の比はおよそ1:400であることが求められました。
ということは、表面積比は?体積比は?これも求め方は授業で学習しましたね。
表面積比はおよそ1:160000、体積比はおよそ1:64000000。想像がつきませんね。
「中1のALではもっと頭を使っていたのに、中2のALでは計算ばっかりだ。」という感想が聞かれましたが、そうではありません。学習によって使える道具・知識が増えたことで、ゴールまで進みやすくなったのです。頭を使っていないのではなく、悩まなくても道筋が考えられるようになってきているのです。
でも、どうやらみんなはもっと悩んで解決したいようですね。わかりました。次回はもっと頭を使う課題にチャレンジしてもらいましょう。お楽しみに!